
ea,. 

o 

ESD ACCESSION LIST 

ESD-TR-72-147,  Vol.  2 . MTR-2254,  Vol.   II 
Copy No. ( of  jX     cvs. 

HARMONIOUS COOPERATION OF PROCESSES 
OPERATING ON A COMMON SET OF DATA,  PART 2 

D. Elliott Bell 

DECEMBER 1972 

Prepared for 

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS 

ELECTRONIC SYSTEMS DIVISION 
AIR FORCE SYSTEMS COMMAND 

UNITED STATES AIR FORCE 
L. G. Hanscom Field, Bedford, Massachusetts 

aP 
.& 

& ̂  
,;:•' 

r*       $> 

Approved for public release; 
distribution unlimited. 

Project 671A 
Prepared by 

THE MITRE CORPORATION 
Bedford, Massachusetts 

Contract No.   F19628-71-C-0002 

4D7S7103 



When U.S. Government drawings, specifications, 

or other data are used for any purpose other than 

a definitely related government procurement 

operation, the government thereby Incurs no re- 

sponsibility nor any obligation whatsoever; and 

the fact that the government may have formu- 

lated, furnished, or in any way supplied the said 

drawings, specifications, or other data Is not to be 

regarded by implication or otherwise, as in any 

manner licensing the holder or any other person 

or corporation, or conveying any rights or per- 

mission to manufacture, use, or sell any patented 

Invention that may in any way be related thereto. 

Do  not  return  this  copy.     Retain  or destroy 



ESD-TR-72-147,  Vol.  2 MTR-2254,  Vol.   II 

HARMONIOUS COOPERATION OF PROCESSES 
OPERATING ON A COMMON SET OF DATA,  PART 2 

D.  Elliott Bell 

DECEMBER 1972 

Prepared for 

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS 

ELECTRONIC SYSTEMS DIVISION 
AIR FORCE SYSTEMS COMMAND 

UNITED STATES AIR FORCE 
L. G. Hanscom Field, Bedford, Massachusetts 

Approved for public release; 
distribution unlimited. 

Project 671A 
Prepared by 

THE MITRE CORPORATION 
Bedford, Massachusetts 

Contract No.  F19628-71-C-0002 



FOREWORD 

The work described in this report was carried out under the spon- 

sorship of the Deputy for Command and Management Systems, Project 671A, 

by The MITRE Corporation, Bedford, Massachusetts, under Contract No. 

F19(628)-71-C-0002. 

REVIEW AND APPROVAL 

This technical report has been reviewed and is approved. 

MELVIN B. EMMONS, Colonel, USAF 
Director, Information Systems Technology 
Deputy for Command and Management Systems 

ii 



ABSTRACT 

This report provides algorithms (and proofs of their correctness) 
which actualize the data-sharing model of "Harmonious Cooperation of 
Processes Operating on a Common Set of Data, Part 1" (MTR-2254). Also 
included are a sketch of the coordination of the algorithms in Part 2 
in the operation of the Scheduler of Part 1 and a brief analysis of 
the storage required to implement this version of the Scheduler. 

iii 



ACKNOWLEDGMENTS 

I owe special thanks to Leonard J. LaPadula for his substantial 
contribution to this report. He not only wrote Part 1 of this 
series (the direct stimulus of this report) but also spent much time 
checking my work, answering my questions about his report and about 
the data-sharing task of Project 6710, and encouraging me in my 
preparation of this paper. 

I au also greatly indebted to Mrs. Judith Clapp for her patient 
and meticulous examination of this report and for the many substantial 
improvements she suggested to me.  Finally I want to thank 
Miss Dona Karas who typed this report. Her competence and her 
patience left nothing to be desired and made the final editing of 
this report almost effortless. 

iv 



TABLE OF CONTENTS 

LIST OF ILLUSTRATIONS 

SECTION I    INTRODUCTION 
THE INTENT OF THIS REPORT 
A SUMMARY OF THE SITUATION 
THE DIRECTION OF THE REPORT 

SECTION II   ALGORITHM 3 
INTRODUCTION 
NOTATION 
ALGORITHM 3 
ANALYSIS OF THE ALGORITHM 

PaSe 

vi 

1 
1 
1 
2 

4 
4 
4 
5 
5 

SECTION III UPPER TRIANGULAR MATRICES AND SAFE 
PERMUTATIONS 8 
INTRODUCTION 8 
NOTATION AND BASIC FACTS 8 
MAIN DEVELOPMENT 9 

SECTION IV   ALGORITHM y 14 
INTRODUCTION 14 
DEVELOPMENT 14 
ALGORITHM y 17 
ANALYSIS OF THE ALGORITHM 17 

SECTION V    A SCOREKEEPER FOR HARMONIOUS COOPERATION 19 
INTRODUCTION 19 
DESCRIPTION OF THE SCORECARD 19 
USE OF THE SCOREKEEPER 22 

SECTION VI   AN OVERVIEW OF THE OPERATION OF THE SCHEDULER   37 
INTRODUCTION 37 
DESCRIPTION OF THE OPERATION OF THE SCHEDULER 37 
ANALYSIS OF STORAGE REQUIREMENTS 41 
CONCLUDING REMARKS 42 

BIBLIOGRAPHY 44 



LIST OF ILLUSTRATIONS 

Figure Number Page 

1 The UVQJ Matrix 21 
2 A Process Begins Its Run 24 
3 The Investigation of a Write Mode Request 26 
4 The Investigation of a Read Mode Request 28 
5 The Investigation of an Inquiry-Use Mode Request 30 
6 The Investigation of a Request for a Subelement 32 
7 The Release of a Datum 33 
8 P. Releases a Subelement 33 
9 Tne Reduction of a Claim List 34 

10 A Process Finishes 34 

vi 



SECTION I 

INTRODUCTION 

THE INTENT OF THIS REPORT 

The harmonious cooperation guaranteed by Theorem 18 of "Harmonious 

Cooperation of Processes Operating on a Common Set of Data, Part 1" 

^called "HC1" in this report) depends on a Scheduler which evaluates 

each request by a process P, for a datum S..  The evaluation is 

carried out using strategy a to determine that granting a 

request would not cause conflict and would result in a 

safe situation.  The latter condition will be satisfied if there is a 

safe permutation of the processes P by Theorems 5 and 7 of HC1.  It 

is the intent of this report to provide concrete algorithms for 

making these determinations and for handling the record-keeping 

involved when a process releases data, reduces its claim lists, or 

begins or ends its run.  It is always assumed that processes are acting 

"harmoniously": no error checks are included in this report. 

A SUMMARY OF THE SITUATION 

The focus throughout this report is a black box called a Scheduler 

which acts as a "librarian" for the data base D = (S,R).  As in HC1, 

S = {S,, . . . , S } is a set of elements, R is a binary relation on 
1 m — 

S and R' is a binary relation on the elements of elements of S.  The 

T^ocesses _P = {F  P } make requests for elements of S.  The 

Scheduler grants or ejects requests for elements of S so that 



1) no conflict results, 

2) deadlock never occurs, and 

3) no process is permanently blocked. 

THE DIRECTION OF THE REPORT 

The approach of this report is to translate the determinations 

the Scheduler must make into mathematical propositions. The 

algorithms introduced provide an efficient way of translating the 

mathematical propositions into routinely decidable questions. 

Section II addresses the question of whether the granting of 

a request will result in a safe situation. Using the approach of 

HCl, this determination is made by determining whether the resulting 

blocking graph of the processes P would be loop-free. Algorithm /3 

allows one to determine whether the requesting process would be 

contained in a closed path in the blocking graph if its request were 

granted.  This section utilizes digraph theory via adjacency matrices. 

_c'.i.on j.II provides rigorous justification for recording the 

potential blocking matrix in strict upper triangular form. Using 

matrix operations it is shown that the existence of a safe permuta- 

tion of .he processes P is equivalent to the existence of a strict 

upper triangular matrix representation of the potential blocking 

matrix. 

Section IV provides an algorithm for generating a safe permuta- 

tion of che processes when it is known that one exists.  In addition, 



it provides a method of altering the potential blocking matrix so 

that it will correspond to the current safe permutation A.  Section IV 

utilizes matrix theory. 

Section V describes a Scorecard for keeping track of the data 

elements S..  In addition, the alteration of the Scorecard under the 
J 

nine basic data operations is described.  Diagrams giving capsule 

descriptions of the alterations of the Scorecard are included. 

Section VI begins by describing how the various algorithms fit 

together to aid the Scheduler in its task.  An analysis of the precise 

storage requirements for this implementation of the Scheduler are 

calculated for n processes using m pieces of shared data.  For example, 

it is calculated that on a 256K word machine having 16-bit words, 64 

concurrent users of 1000 files (each file having no more than 64K 

records) would require a storage overhead of 6.44% of the total storage 

capacity.  The section ends with a short discussion of this report's 

functions and its omissions. 



SECTION II 

ALGORITHM /S 

INTRODUCTION 

In this section, a mathematical algorithm is presented that will 

enable the Scheduler to determine whether the granting of a request 

will result in a safe permutation of the processes.  If the request 

would not result in a safe permutation, then by definition the 

blocking graph of the processes after the request is granted will 

contain a closed path. If P is the requesting process, then it is 

clear that P would be contained in this closed path. Algorithm j3 

provides a means of determining whether P would be contained in such 

a closed path. 

Algorithm /3 is an outgrowth of digraph theory and the particular 

requirements of the data-sharing task of Project 6710. The blocking 

graph of the processes P is represented by its adjacency matrix. 

Algorithm /3 provides a method of determining from such an adjacency 

matrix whether a given vertex v. is contained in a cycle in a digraph, 

thereby establishing whether the granting of the request will yield 

a jafe permutation. 

NOTATION 

Let G be a directed graph with n vertices and let a = (a,.)iw -^ 

be the associated 0-1 adjacency matrix: a.. = 1 if there is an arc 



from vertex v. to vertex v. and a. . =0 if there is no such arc. For 

1 ^ i £ n, we let a. = (a.,, . . . , a. ) be the ith row of a. 

Let r, and r. be 1 x n row vectors with r. = (r., , . . . , r. ) 
12 i    il in 

for i = 1,2. Let [r^ r2] = (max(ru, *,])» • • • , max (rln, r^)). 

ALGORITHM 0 

Set T = a. and E = cp, the empty set. 

Step 1;  If there is a j &  E such that T. (the jth component of 

X) is not zero, replace T by [T, tt. ], where j„ is the least such j, 
J0 

and replace E by E U ^rJ' 

Step 2;  If T. =1, there is a circuit containing v :  stop the 

algorithm.  If T =0, repeat step 1. 

If it becomes impossible to perform step 1, then there is no 

cycle in G containing v.. 

ANALYSIS OF THE ALGORITHM 

For T   = a., T   represents the vertices of G connected to 

v by paths of length 1.  If tj , . . . , j, } are the indices of the 
i                        1 K 

nonzerc ro components of T  , letting T   = [...[[T^  , a.  J,...], OL.  ] 
Jl        Jk 

gives a representation of the vertices of G that are connected to 

v. by paths of length s 2. Repeating this procedure, we will 

have T     = T   since no more than n distinct rows can be fed 

into the process. Then T   represents all vertices that can 

be connected to v. by paths of any length. If T . - 0, v. cannot 

be reached along a path from v.; if T ^ = 1, it can be reached. Hence 



v^ lies on a cycle if and only if T . • 1. The algorithm constructs 

the T in a somewhat different fashion and it allows the process to 

terminate at any time that a 1 appears in the ith place of the vector 

T. 

The algorithm itself allows one to feed in a given row no more 

than once.  In a sense, it represents a cycle search with a memory 

of which vertices have already been reached. 

In the application of this algorithm, a significant reduction 

can be made. The matrix a will represent the potential blocking 

graph after the granting of a request for a datum. As will become 

evident, \ie  can assume that a.  is almost a strict upper triangulr.r 

matrix; that is, a.,   = 0 if i ^ j £ k: 
JK 

a =     i 

With thia restriction on Oc, we can let T be a 1 x i row vector and 

ni.e the a. - (a.,, . . • , a..) for the a. in the algorithm. This 

leduction is possible because for k > j , v, —h  v.; if a cycle 



containing v exists, that path does not contain any v, where k > i 

because each vertex following v, in the circuit would be of the form 

Vk+t' t > °- 



SECTION III 

UPPER TRIANGULAR MATRICES AND SAFE PERMUTATIONS 

INIRODUCTION 

This section will give theoretical justification for a matrix 

method of recording potential blocking in an implementation of the 

Scheduler. It is shown that if P is loop-free at time Y, then there 

is a permutation of the processes P such that the associated adjacency 

matrix id strictly upper triangular. This result is obtained using 

permutation matrices and elementary matrix operations. As mentioned 

at the end of Section II, recording the potential blocking graph as 

a strictly upper triangular matrix allows a definite reduction in 

algorithm 0. 

NOTATION AND BASIC FACTS 

Let P denote the set of permutations on the set {1 m}. —m 

If 6 €  P and 1 £ j ^ m, we will denote the image of j under 6 by 

"j6". Let M denote the set of m x m matrices with m components 

equal to one (others 0), such that each row and each column has 

exactly one "l"-entry: I (the identity m x m matrix) is in M • 

For 6 € P , let M(6) be the unique matrix (a..) ,   .  .    with -m ij 1 s i, j ^ m 

°u=< 

1, if j = 16 

0, otherwise . 



Clearly M(6) € M . Also, if 6, and 6. are distinct elements of P , 
"Til 1       2. "TO 

then M(6,) and M(5 ) are distinct elements of M . In addition, for 

CH  € M , there is a (unique) 6 € P such that a = M(6). —m ~ro 

Consider 6,, 60 C P . Write M(6 ) = (a ) and M(6.) = (/S. .). 
I    Z   ""TO ±       Ij /       1J 

Let (yti)  = (0^)03^). Clearly, 

YU=< 

1, if j = (ie^ 

0, otherwise . 

Hence (Y, .) = M(6 6 ) so that M(6,)M(60) = M(6,6.). We call M 
ij       •«• *• \ 2. 1 2. ~m 

the set of m x m permutation matrices and note that M is in 1 - 1 

correspondence to P by the correspondence 6—M(6).  In fact, one 

can show that (L, , , , , xm)M(6) = (xi§» • • • » x^ * 

MAIN DEVELOPMENT 

Let the processes of a sequential machine be P = {p.., . . . , P }, 

Any 6 € P generates a permutation {P,g, . • . , F J of the processes, 

For a state s of the machine and any 6 € P , there is an associated 
*    —n 

blocking graph G(s, 6).  If 6* € P , then G(s, 6) and G(s, 6') are 
n 

isomorphic. Let the adjacency matrix of G(s, 6) be denoted m(s, 6). 

In general, m(s, 6) and m(s, 6') will not appear to be related.  In 

fact, however, m(s, 6) and m(s, 6') are conjugates of a very special 

type. 

Theorem 3.1:  If 6, 6' e P^, then m(s, 6) = M(p)~ m(s, 6')M(p) 

for some p € P . r      -n 



t 

Proof: Write 6 = 6*p and write p = 11 T,   = T,   . . . T , where 
k=l k        l C 

ea^ii T, u a transposition. We induct on t: 

t = 1; Let t = (u, v). For any k and j between 1 and n, 

P. -» P. in state s<=>P... •* P.,. in state s 
k   j k6   JO 

^Pk6f " Pj6' in state s* 

Thus, m(s, 6')k6, 6, = m(s, 6)k6 fi, where for any matrix a, a 

denotes the (i, j)-component. To simplify notation, we write 

k' = k6' and j' = j6'. Thus, m(s, 6')k,  , = m(s, 6)kip)jip» 

Case 1;  If k', j' { {u, v}, k'p = k' and j'p = j', so that 

m(s, 6')ki -i • m(s, 6>k,  ,. 

Case II;  If k* { {u, v] and {j', t] = [u, v}, then k'p = k' 

and j'p = t. Thus, m(s, 6')kiu = m(s, 5
,)fc,v and m(s, 6')k y 

= m(s, 6)k^. 

Case III; If j' ^ {u, v] and k' t {u, v}, then as in Case II, 

m(s, 6')uji 
= m(s> 6)vji 

and m(s» 6')vj« 
= m<s> 6)uj'* 

Case IV;  If {k', r] = {u, v} = {j', t}, then k'p = r and 

j 'p = t. Thus, we have 

m(s, 6*)  = m(s, 6) * »  'uv   
x ' 'vu 

m(s, 6')  = m(s, 6) v '   'uu w 

m(s, 6')  = m(s, 6) x •  'vu        uv 

m(s, 6')  = m(s, 6) w     'uu 

and 

10 



u 

u 

3* / 2* 

Hence, m(s, 6*) and m(s, 6) agree in areas marked 1; the values in 

rows u and v are interchanged (except the corners marked 2, 2*, 3, 

and 3*); the values in columns u and v are interchanged (except the 

corners marked 2, 2*, 3, and 3*); and the values (2 and 2*) and 

(3 and 3*) are interchanged. 

Right multiplication of m(s, 6*) by M(p) interchanges the u 

and v columns of m(s, 6); left multiplication of m(s, 6')M(p) by 

M(p)~ - M(p ) = M(p) interchanges the u and v rows. Hence, the 

description above of m(s, 6) in terms of m(s, 6*) applies equally 

well to M(p)" m(s, 6)M(p). Hence, the equality holds. 

Suppose the result holds when p can be expressed as a product 

of t - 1 transpositions, t > 1. Write 6 = 6'p* T, where T is a 

11 



transposition and p' can be expressed as a product of t - 1 trans- 

positions. By assumption, m(s, 6*p') = M(p') m(s, 6')M( p'); by 

the case t = 1, m(s, 6) = M(T)-1m(s, 6'p')M(T). 

Hence, m(s, 6) - M(T)"Hl(p,)"1m(8, S^Mfo'MT) 

= fM(p')M(T)J "Vs, 6') M(p')M(T) 

• M(p'T) m(s, 6')K(P'T)  . 

Note; The permutation p is unique: p = 6(6')  . 

For a state s, let m(s) = {m(s, 6): 6 e P ]. 

Theorem 3.2:  If, for a state s, P = {p.., . . . , P } is loop- 

free, then 

(*) m(s) contains a strictly upper triangular matrix 

(that is, a matrix which has zero entries on and below the main 

diagonal). 

Proof: Let {pj, . . . , P*} be the safe permutation generated 

by Theorem 5 in HCl. Then by Theorem 5 for each k e {1, . . . , n} 

(2)  P'-/*P* for each j € {k+1, . . . , n} is satisfied. We 

consider 5 e  P such that P' = P,c for k e {l, . . . , n}. If 
—n k6 

s i <: j < n, condition (2) says that m(s, 6)  • 0.  Since 

I   ^  fk a^vays» m(s» ^)uk = ®  ^or ^ e ^» • * * » n^* Hence» m(s 6) 

is a str;ui;Iy upper triangular matrix. 

Corollag 3.3: For a state s, P is loop-free if and only if 

condition (*) holds. 

12 



Proof:  If m(s, 6) is strictly upper triangular, P must be 

loop-free:  if P  , P  , . . . , P  is a loop in P, i < i  . . . 
Xl  X2 7> l        l 

< i < i,, a contradiction. 
P   1 

Remark:  Corollary 3.3 can be found in a context-free form in 

[l, p. 269]. 

13 



SECTION IV 

ALGORITHM Y 

INTRODUCTION 

Algorithm Y provides a systematic method of generating a safe 

permutation of the processes from an arbitrary permutation 77 when 

the set P of processes is loop-free. It also supplies a way to 

alter the potential blocking matrix so that it will correspond with 

the current safe permutation and thus preserve the advantages of 

recording the potential blocking matrix in strict upper triangular 

form. 

Algorithm Y uses elementary matrix operations which can be 

performed routinely without actual matrix multiplication.  The 

correctness and effectiveness of algorithm Y is proved using matrix 

arguments while its implementation uses the more prosaic matrix 

manipulation techniques described in this section. 

DEVELOPMENT 

The effectiveness of the algorithm will be established by 

repeated use of the following lemma: 

Lemma 4.1;  Let G be a digraph with vertex set V = 

lv. , . . . , v }. Let the n x n 0-1 matrix A., be the adjacency 

•matrix of G.    Suppose there is a sequence {a ,  .   .  .   , a }  of 

distiuct positive integers £ n such that (A, )      = 1 for 
^ al,ak+l 

14 

m 



r 

1 £ k < n and (A )     =1 where the matrices A, are defined n'a1,a2 "k 

recursively by A^ - M((a1, «fc+1))
A
k
M((a1t Vn^* 

Then the arcs 

(V' V (V V' ' ' ' ' (V* / Va ^ (Va ' va > form a 12     2   3 n-1   n    n   1 
closed path in G. 

Proof; By the definition of A, ., the components of A. - and 

A, have the following relations: 

(Ak)lj if l.J \  Ult  ak+1} 

<Vsj  
lf J *  {V \+l} = fi'  S} 

(a) <Wlj =       ^   (A^ if i | {.^ a^} = [j,  t] 

<Vst lf Ul> W = {l' s} = {J> t}   ' 

The following statement will be established by induction: 

For 1 ^ k £ n, conditions   (b),   (c)   and  (d)  below hold for A, 

and the vertices V ordered relative to the permutation 

(a^ |   •   *   <   , a^): 

(b) If 1 k $& l     1 ^ s ^ k],  the ^th row  (column)  represents  the 
s 

arcs of G beginning (ending) at V.; 

(c) if 1 £ i £ k, the a. _-st row (column) represents the arcs 

of G beginning (ending) at V ; and 
ai 

(d) the a.-st row (column) represents the arcs of G beginning 

(ending) at V • 
*k 

The case k • 1 is trivially true by the definition of A.. 

Suppose the statement is true for u where 1 ^ u £ n. 

15 



au+l 

Let i ^ {a , . . . , a -]. By conditions (a), (b) and (c) for 

u, che ith row (column) of A   satisfies condition (b) for u + 1, 

except psrhaps at positions a, and a ,-. Now (A ,,).   = (A ). 
1     u+1       u+l'i,a1    u 1, 

ana (A ,,).     = (A ).   .  Since (a,, . . . , a ,,) 
u+ri,a jn    u'i.a, 1 u+r 

u+1        1 
= (a , . . . , a ) (a , a -), it follows that the equations in the 

preceding sentence are justified by the fact that the first equality 

means (A  n) .   = l^(v., v   ) is an arc in G ^=?(A ) .     =1 and 
u+1 i,a1      i  au+1 u i,au+1 

the second equality means (A ,-,).     = 1« Hence, condition (b) 
u+i i,au+l 

is satisfied for u+1, and condition (c) is satisfied for u+1 and 

1 < i < u. 

Now the a -st row (column) of A .. represents what the a +1~st 

row (column) of A represents, namely the arcs of G beginning (ending) 

at v   .  Similarly, the a ,1~st row (column)of A ,- represents 
u+1 

whac the a -st row of A represents, namely the arcs of G beginning 

(endiug) at v  . Hence, condition (c) is satisfied for u+1 and i=u 
8 u 

and condition (d) is satisfied for u+1. 

The statement is now proved. 

The hypothesis (A, )       = 1 for 1 s k < n implies that there 
k  al,ak+l 

is an arc from v  to v    in G. The hypothesis (A )     =1 
•k    ^+1 n al'a2 

implies that there is an arc from v  to v    These arcs are the v a     a, 
u     1 

c\osed path of the lemma. 

16 



ALGORITHM Y 

Let the state of the machine be s • For any permutation it  of 

the first n integers, when P = {p , . . . , P }, let m(s , It)  be the 

potential blocking matrix relative to the permutation it:     the (i, j)- 

component of m(s , It)   is 1 if P. -• P  in state s and is 0 other- 

wise. 

Let it  be any permutation on 11, 2, ...,n} and suppose P is 

loop-free in state s . Then the potential blocking graph of p at 

state s has no closed paths. Set a  = m (s , It) . 

Step 1:  Find the greatest s such that a      =1 for some u < s. 

Step 2: Find the least t < s such that a  =1. 
 B— st 

Step 3; Replace a  by M(s, t)aM(s, t) and It  by 7T(s, t) . 

After Step 3, repeat Step 2, if possible. If Step 2 is not 

possible, repeat Step 1, if possible.  (If it is possible to repeat 

Step 1, the new s' will be smaller than s, as will be explained.) 

If Step 1 is not possible at any time, a is a strictly upper triangular 

matrix, or equivalently, It  is a safe permutation. 

ANALYSIS OF THE ALGORITHM 

After Step 1, we know that a.    = 0 for i > s and after Step 2 

that a  .  • 0 for j < t. Since Step 3 interchanges the s and t rows s J 

and columns of a  and the s and t columns are 0 below the s row, the 

new a  also has 0 below the s row. Suppose after m repetitions of 

Step 2 are done for a given s of Step 1 and a given t of Step 2, 

17 



chere is a 1 in the (s, t) position of a. The algorithm's operation 

makes lemma 4.1 applicable, so that chere would be a closed path 

including v  in the potential blocking graph in state s . That is, 

j? would have a loop, contrary to assumption. Hence, the algorithm 

can clear a  of l's in the s-row without introducing l's below the 

s-row and under the main diagonal. Clearly, at most s - t repetitions 

of Step 2 with this s will clear row s of l's and at most n-1 repeti- 

tions of Step 1 would clear all rows of l's below the main diagonal. 

18 



SECTION V 

A SCOREKEEPER FOR HARMONIOUS COOPERATION 

INTRODUCTION 

The operation of the Scheduler in HC1 depends on an algorithm 

which processes a request for a datum and responds in the following 

way: 

1) it determines whether granting the request would cause 

conflict, and, if so, the process is added to the (£ queue ; 

2) if granting the request would not cause conflict, it also 

generates the potential-blocking vector of the requesting 

process P . 

In addition, an algorithm to process releases of data and the 

beginnings and ends of process runs is necessary.  Both algorithms 

are encompassed in the Scorekeeper algorithm described below. 

DESCRIPTION OF THE SCORECARD 

The Scorekeeper can record both the current allocation of data 

and the future claims on the data base in an n x m x 4 matrix and 

an n x 2 matrix, both with entries of 0 and 1.  The n x m x 4 matrix 

will be called the UVQJ matrix, the n x 2 matrix will be called 

the K-matrix (after the notation in HC1), and the aggregate will be 

called the Scorecard. 

1As described in HC1. 

19 



A. The JVQJ Matrix 

The UVQJ matrix will be considered to be 4 n x m matrices, 

referred to as the Use layer, the V layer, the Q layer, and the J 

layer, the letters corresponding to the notation in HC1 for the 

prescribed Limits on each process's data needs.  The (i, j)- 

component of the V (Q, J) layer is 1 if process P. has included 

datum S. _n V.(Q., J.) and is 0 otherwise.  Since V, Q, and J are 
j    i  I  l 

pairwise disjoint, at most one of those layers will have a 1-enrry 

in any given (i, j)-component.  If P. is using datum S. at state 

i , tht Use layer will have a 1 in the (i, j)-component; otherwise, 

the (i, j;-component is 0.  The Use layer will be relatively nccive 

as the machine runs, while the remaining layers will remain relatively 

static.  In fact, the V, Q, and J layers will change only when a 

process begins or ends its activity or when a process relinquishes 

its claim on a given datum.  Figure 1 gives a visualization of the 

UVQJ matrix. 

B. K-matrix 

The K-matrix records the elements of elements of S in use 

during state s :  if P. is using a.  e S. during s , row i will have 

t.ic Uuple (j , u) ; if P. is not using anything in inquiry-use mode, 

row i will have the duple (0, 0). 

20 



u 

•3 

I 
a) 

I 

21 



USE OF THE SCOREKEEPER 

The use of the Scorekeeper will be divided into nine parca— 

beginning a process's run, requests for an element of S in the 

write, read, or inquiry-use mode, the request for a subelement (that 

is, an element of an element of S), the release of an element of S, 

the release of a subelement, a reduction of future claims, and tne 

end of a process's run. 

In the course of this section, two operations (which arc aj y^t 

undefined) will appear a number of times.  The first operation 

determines whether the granting of a request would result in a safe 

permutation.  The input of this operation is a 1 x n vector C whose 

entries are 0 or 1 and the output could be described as the sei. 

{safe, not-safe}.  We shall denote this operation by "SAFETY(C)", 

and we shall describe it in more detail in Section VI.  The second 

operation generates a new safe permutation and alters the potential 

blocking matrix a to match the new permutation.  We shall denote 

this operation "UPDATE", and we shall present a full description in 

Section VI. 

Another operation which occurs regularly in this section involves 

-i determination of those indices k such that k = i or that S,"""*S. . 
k  j 

This determination is necessary to check for conflict and to generate 

tue ..ouential-blocking vector which would result from granting a 

22 



specific request.  We will let INDEX(j) be defined as the set 

2 
{k: k = j or S-—S }. 

»  J 

The remainder of this section is devoted to a description of 

the Scorekeeper algorithm in the nine basic situations.  The 

description of the action taken in each situation will begin with 

a precis of the action required by the third model of HC1.  This is 

followed by a description of the action taken by the Scorekeeper 

algorithm juxtaposed with a diagram of that action. 

1.  P. begins its run and declares its claim lists V. , Q , J : 

This action will alter the V, Q, and J layers and it will cause 

an alteration of the potential blocking matrix ct.  In particular, 

the lists Q , V  and J are entered in the Q, V, and J layers. 

Then for each process P, it is determined whether P, potentially 

blocks P.:  if P, potentially blocks P , a   .  is set equal to 1. 
IK. i   A, ,A 

The result of the preceding operation is (possibly) to add l's to 

the A.-column of a.  Thus, the last operation that needs to be 

performed is UPDATE to restore a to strict upper triangularity. 

Figure 2 describes the Scorekeeper's action in this situation. 

After the claim lists are entered, the Use row for each process 

P, is checked.  If Use. . = 1, P. is using S, in some mode.  A check k kj      k j 

of the (k, j)-components of the V, Q, and J layers will determine 

20ne should note that if the relation R, defined on elements 
of S, is equality, then INDEX(j) - {j7 and that the Scorekeeper 
algorithm becomes greatly simplified. 

23 



P. declares claim lists V., Q,, and J. 
1 1"  1'     i 

J" 

1. V V J. are entered 
l 

Ln the UVQJ matrix 

2. tor each k 

a.  For each i with Use, . = 1 

1. The mode M, . in which P, uses S. is determined 

2. While 

a.  M. . = W and V. . OR Q. . OR J. . = 1; or 
ij    kj    IJ 

b.  ft  = R and V.. OR J.. = 1; or 

c.  M, . = I and V.. OR Q.  = 1; 

P,—»-P. because 
k   l ofSj; 

3. While P, —»-P. b< 
k   l 

\'Ai 

! 
scause of S.; 

b.  Consideration of k + l is begun; 

Else consider next j* with Use. .. = 1 
kj* 

b.  Continue with k + 1 

3. Perform UPDATE 

Figure 2.  A Process Begins Its Run 

24 



the mode in which P is using S .  If V  = 1, then P potentially 
K j K.J k 

blocks P. if S. is listed in any of P/s claim lists (that is, if 
i    2 i 

V  OR Q  OR J  = 1).  If v. = 0 and Q . = 1, then P potentially 
lj      K.J      lj KJ k] K. 

blocks P. if S. is claimed in write or inquiry-use mode (that is, 

if V  OR J  = 1).  If V  = 0 and Q  =0, then (assuming as we 

are that P, has access to S.) J  = 1 and P potentially blocks P 

if Sj is claimed in write or read mode (that is, if VJ. OR QJ  = 1). 

If it is determined that P, does potentially block P , it is no 

longer necessary to check the rest of the data P, is using.  A 1 Is 

entered in the (A^, A )-component of a:  process P, (P.) is In 

position A, (A ) in the current safe permutation A.  The search then 

continues by considering the next process P,  .  If P  does not 

potentially block P., then consideration of P>+1 is begun.  After 

all the processes have been considered, a  may no longer be strictly 

upper triangular, and UPDATE is performed to rectify the situation. 

2.  P, requests S. in write mode: 
-1 *^ j  

Granting this request would result in conflict if any other process 

is using any S  (k e INDEX(j)) in any mode.  If granting the request 
& 

would not result in conflict, P would potentially block any process 

that had S  in its V, Q, or J list for any k e INDEX(j).  Figure 3 

describes the investigation of this request as carried out by the 

Scorekeeper. 

It for any k e INDEX(j), the kth column of the Use layer has 

a 1 in it, the granting of P.'s request would cause conflict and 

25 



Operation W 

P. requests S. in write mode 
i J 

yes 

(ORing k-columns of V, Q, J 
layers, k e INDEX(j)) 

1. C «- (C with 0 in ith place) 
2. Perform SAFETY(C) 

1. Grant request 
2. Put 1 at Use 
3. Perform UPDATI 

no queue P, 

Figure 3.  The Investigation of a Write Mode Request 

26 



P is queued.  If no conflict would occur, the kth columns 

(k e INDEX(j)) of the V, Q, or J layers are ORed:  this operation 

will be called Operation W.  The result of Operation W is a vector 

C' whose l's indicate which processes P would potentially block as a 

result of the granting of this particular request.  Since V  = 1, 

the vector C has a 1 in the ith place; this 1 is removed, creating 

a vector C and SAFETY(C) is performed.  If SAFETY(C) determines that 

granting this request would yield a safe permutation, the request 

is granted, a 1 is put in the (i, j)-component of the Use layer to 

record P.'s current access to S., and UPDATE is performed, 
i J 

3.  P. requests S. in read mode: 
-i ^-^= ]  

Granting this request would result in conflict if any other 

process is using any S  (k e INDEX(j)) in either write or inquiry-use 

mode.  If granting the request would not result in conflict, P 

would potentially block any process that had any S  (k e INDEX(j)) 

in its V or J list.  Figure 4 describes the investigation of the 

request as carried out by the Scorekeeper. 

If for any k e INDEX(j), the kth column of the Use layer has a 

1-entry, then the determination of whether the granting of P.'s 

request would cause conflict can be made with one check.  Suppose 

Use , = 1.  If Q . = 0, P is using S, in a mode other than the read 
uk uk   '  u k 

mode and conflict would result if P 's request were granted:  P  is 

aueued.  If Q , = 1, P is reading S, .  If Use , , = 1 where 
Uk U K VK. 

k' e INDEX(j), P must be reading S ,, since otherwise there would 

27 



P. requests S. in read mode 1 j 

Operation R 

yes 
Find a u 

with Use . = 1 
uk 

C* •«• (ORing k-columns of J and V 

layers, k e INDEX(j)) 
no 

1. C +  (C with 0 in ith place) 
2. Perform SAFETY(C) 

no 

ves 

1. Grant request 
2. Put 1 at Use.. 
3. Perform UPDATE* 

yes 

queue P 

A 
•( STOP J 

Figure 4.  The Investigation of a Read Mode Request 

28 



have been conflict before P made his request and conflict is never 

allowed by the Scheduler.  Hence, one check in the Q layer is 

sufficient to approve or disapprove P.'s request on the basis of 

conflict.  If no conflict would ensue, the Operation R is performed: 

OR the k-columns (k e  INDEX(j)) of the J and V layers to produce a 

vector C.  As in 1 above, C represents the potential blocking of 

P. as a result of the granting of his request, except that a 1 appears 

in the _ith position.  The vector C is created from C' by putting a 

0 in the ith place, and SAFETY(C) is performed.  If a safe permutation 

would not result from granting this request, P. is queued; if a 

safe permutation would result, P. is granted his request, a 1 is put 

in the (i, j)-component of Use and UPDATE is performed. 

4.  P. requests S  in inquiry-use mode: 

Granting this request would result in conflict if any other 

process is using any S  (k e INDEX(j)) in write or read modes.  If 

granting the request does not result in conflict, P. would potentially 

block any process that has S  (k e INDEX(j)) in its Q or V list. 

Figure 5 describes the investigation of this request carried out by 

the Scorekeeper. 

If for any k e INDEX(j) the _kth column of the Use layer has a 

1-entry, then a single look at the J layer will determine whether 

conflict will result.  If Use . = 1, we look at J . .  If J , = 0, vk vk      vk 

P is using S  in a mode other than inquiry-use and conflict would 
v tc 

result from granting P.'s request:  P. is queued.  If J  = 1, every 

29 



P. requests S. in inquiry-use mo 1 J 
de 

Operation 
J 

C' «• (ORing k-columns of 

V, Q layers, k e INDEX(j)^ 

1. C *• (C with 0 in ith place) 
2. Perform SAFETY(C) 

1. Grant request 
2. Put 1 in Use . 
3. Perform UPDATE 

no 

yes 

queue P, 

-WsTOP J 

Figure 5.  The Investigation of an Inquiry-Use Mode Request 

30 



process using any S , (k e INDEX(j)) is using S , in inquiry-use 
k. K 

mode.  Next, Operation J is performed:  OR the k-columns 

(k e INDEX(j)) of the Q and V layers.  As before, a potential 

blocking vector C' is created, C is made by putting a 0 in the ith 

position of C, and SAFETY(C) is performed.  If the new permutation 

would not be safe, P. is queued.  If the permutation would be safe, 

P. is granted his request, a 1 is put in Use.., and UPDATE is 
J 

performed. 

5. P. requests a.  e S. el,: 
-i »== ]u 3 i 

Granting this request would result in conflict if any other 

process is using a 3 e S,(k e INDEX(j)) where 3"***a. .  Since the 
K JU 

definition of potential blocking does not include any consideration 

of the K., it is not necessary to generate a potential blocking 

vector C nor to perform SAFETY(C).  Figure 6 describes the investiga- 

tion of this request. 

The set r of elements of elements of S related to a,  by the 

relation * ^is determined.  If (k, v) appears in the K-matrix where 

a,  e T, conflict would result from granting this request so that 

P must be queued.  If no such (k, v) appears in the K-matrix, the 

request is granted and the duple (j, u) is put into the ^th row of 

the K-matrix. 

6. P. relinquishes access to S : 

This action will leave the potential blocking matrix unchanged 

or will replace some l's on row A with O's.  Figure 7 summarizes 

31 



P. request access to a.  E S. e I 1 ju   J   i 

I 
Determine V  =  {a, :  a  £ S  £ S where k £ INDEX(j) 

and a  = a.  or a ,•«-*- a. } 
kv   ju     kv   ju 

yes 

1. Grant the request 
2. Put (j, u) in the ith row of K 

( STOP \« queue P. 

Figure 6.  The Investigation of a Request for a Subeleuenc 

32 



P. relinquishes access to S 

1. Use. . •*-  0 
ij 

2. For each t with Use  = 1 

a. Determine M , the mode in which P uses S 

b. Do Operation M , producing vector C'. 

I 
C «• OR(Cj.:  t with Use  = 1) 

T \ 

Perform UPDATE /STOP ) 

Figure 7.  The Release of a Datum 

P,   relinquishes  a.     e  S, Eli 

1 
(Kllf  K.2)  -H   (0,   0) 

Figure 8.  P. Releases a Subelement 

33 



P. releases S. from its claim list L 
i J i 

1. Lii 
- 0. 

2. For each t with a    =1. 
t,A. 

a. Find all u with Use„   = 1. 
Bt,u 

b. Determine mode M  in which P„  uses S . 
tu         B       u 

c. Check P.'s appropriate claim lists (relative to 

M ) to see if P  would continue to potentially 

block P..       t 

d. If P  will no longer potentially block P., set 

Ut A t= °- t,A. •fSTOPJ 

Figure 9.  The Reduction of a Claim List 

P. finishes 

C «- 0 

T 
1. Perform UPDATE 
2. Set A -column of a equal to 0 

i 
Set ith rows of Use, V, Q, J, and K = 0. 3. 

(STOP J 

Figure 10. A Process Finishes 

34 



the action of the Scorekeeper. 

The (i, j)-component of the Use layer will be set to 0 to 

indicate that P, is not using S .  The potential blocking vector of 

P. now needs to be recalculated.  This is done by applying the 

appropriate operation—W, R, or J—for each datum S that P is 

still using.  The calculation of the blocking vector is completed 

and UPDATE is performed. 

7. P. relinquishes access to ^  e S, e I : 
-i a — ju j i 

Since the definition of potential blocking does not involve 

the contents of the K., P.'s relinquishing a.  does not alter the 

potential blocking matrix.  Hence, the only action necessary when 

P. releases some subelement is to clear the ith row of the K-matrix. 

Figure 8 depicts this action. 

8. P. releases S  from its claim list: 
-i j  

This action will leave the potential blocking matrix unchanged 

or will replace some l's on column A with Os. Figure 9 summarizes 

the action of the Scorekeeper in this situation. 

If P. wants to delete S from its limit list L  (where 

L e {V, Q, J}, the (i, j)-component of the L layer is set equal to 

0.  The column vector which indicates which processes potentially 

block P  r.fter this deletion is next calculated.  If 

A = (A   A ) is the current permutation such that 
I- n 

a  = m(s , A) and B = A  , one proceeds by finding processes P 
v at 

35 



who were potentially blocking P before the deletion and determining 

whether they potentially block P. after the deletion.  This is done 

by finding t with a    =1 and then finding u with Use    = 1 and 
t, A. B ,u 

' i t' 
then finding u with Use_   = 1.  For every pair (t, u) of this type 

Vu 

we  set 

OR(V.   ,Q.   ,J.   :     re  INDEX (u) ,  Use,, - 1)  if V_ =1 
ir'xir'   ir B  ,u Bt->u 

a = < 
t,A. 

OR(V.   ,J.   : re  INDEX (u), Use,,         =  1)   if  Q_         =  i 
ir'   ir ' B ,u                       B    u 

OR(V. ,Q. : re INDEX(u), UseD   - 1) if J_   = 1 
ir'xir ' B ,u         B ,u 

That is, a    is set equal to 1 if and only if P. has placed a 
i 

iuture claim on a datum S * * S  and the claim is in a mode which 
r   u 

could cause conflict with P  . 
Bt 

9.  P. finishes: 
—l  

This operation is the easiest to deal with.  P. is no longer 

potentially blocked, potentially blocks no one, and his Scorecard 

ib 0.  Figure 10 summarizes the Scorekeeper's action for this 

operation. 

The A. rows aud columns of the potential blocking matrix a are 

tilled with 0's, and the i^th rows of Use, V, Q, J, and K are filled 

\*ith 0's.  The vector C is set equal to 0 because use is made of C 

in performing UPDATE. 

36 



SECTION VI 

AN OVERVIEW OF THE OPERATION OF THE SCHEDULER 

INTRODUCTION 

In this section the use and interrelations of the algorithms 

in previous sections of this paper are described.  In addition, the 

operations SAFETY(C) and UPDATE are specified.  Finally, brief analysis 

of this implementation of HCl's model is given in terms of necessary 

storage space for the matrices and vectors of the algorithms. 

DESCRIPTION OF THE OPERATION OF THE SCHEDULER 

Assume that the Scheduler is to handle n processes concurrently 

and that the data base has m pieces of data. The plan of implementa- 

tion presented in this paper requires the following apparatus: 

1) an n x n potential blocking matrix &', 

2) a 1 x n vector A for recording the current safe permutation 

and a 1 x n vector B to record the inverse of A; 

3) two 1 x n vectors, T and E, for use in algorithm 0 for 

checking for a safe permutation; 

4) the Scorecard, consisting of the n x m x 4 UVQJ matrix and 

the n x 2 K-array; and 

5) a 1 x n vector C for use in calculating potential blocking 

vectors. 

AL time v*,  A = B = (1, . . . , n) and every other vector or 

matrix is set equal to 0. 

37 



When a process P. begins its run, it is put in queue T_, the 

temporary-holding queue, if JJ, the special-attention queue, is non- 

empty and it is put into 12, the set of running processes, if ]} is 

empty.  In any case, the Scorekeeper performs the necessary bookkeeping 

to record P.'s claim lists and to correct the potential blocking 

matrix (as described in Section V). 

When P. requests a datum S., the request is processed as 

described in Section V.  The first check is for conflict.  If conflict 

would occur, the request is denied and P. is queued on 0^.  If conflict 

would net occur, the vector C is generated (as described in Section V) 

which shows those processes P would potentially block because of 

his access to S. if his request were granted.  Then SAFETY(C) is 

performed, as described here.  First, T is set equal to 

OR(aA , (CA , CA , . . . , CA )) where C = (C^, . . . , Cn).  This 
i    1   2 n 

rearrangement is necessary because the Scorecard keeps records 

relative to the identity permutation I whereas the matrix a keeps 

records relative to the current safe permutation A.  The A -th row 

of a  is ORed with the rearranged vector C because C records only 

the potential blocking of P due to his possession of S..  Algorithm 8 

is run on T with the vector E keeping track of which rows have 

already been ORed into T (as described in Section II): when row k 

of a is ORed into T, a 1 is put in E .  The determination  in 

algorithm £ whether there is a j t  E with T. f  0 is made by sweeping 

T and at any 1 checking the same entry of E:  if there is a 1, 

continue the sweep; if there is a 0, a 1 is added and the appropriate 

38 



row of a is ORed into T.  If algorithm &  determines that the resulting 

permutation would not be safe, SAFETY(C) = not-safe and P is 

queued.  If SAFETY(C) = safe, P. is granted his request for S., a 1 

is put at Use., (as described in Section V), and UPDATE is performed. 

The vector C is ORed into the potential blocking matrix a, relative 

to the safe permutation A.  That is, a.  = (a.  .,..., a.  ) and 
A      A..J. A. n 
i     i i 

(C    C. ) are ORed to create a new A.-row for the matrix. 
A- A 1 
1 n 

The last action in UPDATE of the Scheduler is algorithm y (described in 

Section IV).  Matrix a may now no longer be a strictly upper 

triangular matrix.  Each nonzero entry of a is removed by an inter- 

change of a pair of rows and columns.  If the i^th and jth rows and 

columns are switched, then the values AJ   and A. are switched and the 
i     J 

values B.  and B.  are switched.  After this action A will still A.     A. 
i      J 

represent the "current" safe permutation so that a = m(s   A) and v+i, 

B = A  .  It might be noted that the switch of B  and B  can be 
i    j 

made either before or after the switch of A. and A.; the result is 1     J 

the same. 

When a process releases a datum, the Scheduler alters the 

Scorecard and the matrix a as described in Section V.  The algorithm 

in Section IV of HC1 concerning the release of a datum is performed 

next.  In essence, the special priority queue B  is checked and 

mptied if possible.  If JJ is emptied, all the processes suspended 

in the temporary queue T are allowed to begin their run.  If JJ 

annot be emptied (or if it was empty to begin with), the queue 0^ 

39 



it; swept in order.  Each process in the queue has his last request 

reprocessed as outlined in the preceding paragraphs.  If the element 

that had been requested is available (viz., if that element was 

just released) and the granting of the request is permissable, the 

request is granted and the process is removed from the queue 0^.  If 

the element is available but the granting of the request is not 

permissable, then the process is put in queue jJ, if it is empty, 

and all processes wanting to enter the system are queued in T_.  If 

there are several processes whose requested element is now available 

and whose request is still not permissable, then the first such 

process in (J. will be put into queue _B and the others will be left 

in queue i±. 

The Scheduler's actions under a reduction of a claim list or 

an end of a process's run are treated in Section V.  The Scorecard 

entries of the process are altered and the potential blocking matrix 

a is altered by recalculating the potential blocking (or potentially 

blocked) vector of that process and entering it in a and by performing 

UPDATE.  In addition, after a process ends its run, a queue search, 

exactly as that described in the paragraph above, is initiated. 

The preceding paragraphs provide a complete functional de- 

ocription of the operation of the Scheduler. Moreover, the entire 

operation cf the Scheduler is encompassed in the algorithms of this 

paper u*. presented in this section. 

40 



ANALYSIS OF STORAGE REQUIREMENTS 

The description of this section allows immediate calculation of 

the storage requirements for this realization of the model of HCl. 

It can be shown that the positive integer n can be expressed with 

N binary digits, where N = [log  n] +6, 6 =0 or 1.  Similarly, set 

M = [log  m] + Y, Y = 0 or 1. The various parts of the Scheduler 

algorithms then require the following amounts of storage: 

2 
the matrix a n bits; 

the vectors A and B nN bits each; 

the vectors C, T, and E       n bits each 

the UVQJ matrix 4nm bits; and 

the K-array n(M+k) bits, 

where an identification for an element of an element of the data base 

requires no more than k bits.  Setting k = [log . j] +f, £ = 0 or 1 

where j is the maximum number of elements in an element of S will 

usually be sufficient. The total necessary storage is 

n2 + n(2N + 4m + M + k + 3); of this total, only n2 + n(2N + 3m + 3) 

bits are required if the inquiry-use mode is eliminated from the 

model, as in Section V of HCl. 

As an example, suppose a 256K word machine with 16-bit words is 

to be used to provide data-sharing for 64 concurrent users of 1000 

files, each with no more than 64,000 records. Since 64,000 can be 

expret. >e-i with 16 binary digits, we can set k = 16. With n = 64 = 2 , 

N = 6. Further, m = 1000 so that the Scheduler would require 

41 



262,720 bits of storage or 16,420 words. On a 256K machine, this is 

an overhead of about 6.42% of the total storage. If the inquiry u*e 

mode were omitted, only 197,056 bits • 12,316 words are needed, u 

4.'/2% overhead.  If the number of files were only 500, the respective 

overhead figures would be 3.28% and 2.46%. 

It should be kept in mind that the figures above do got ta*e 

inuo account the storage space necessary for (i) the programs which 

actualize the algorithms and (ii) the space necessary for the inuexing 

necessary for the matrices and vectors involved. The storage estimates 

include only the space necessary for the bulk information required 

by this method of realizing HCl's model. 

CONCLUDING REMARKS 

This papei has presented one particular realization of  the 

Scheduler of HC1.  A set of record-keeping devices and algorithms 

for their use have been suggested and a dynamic description of the 

functioning Scheduler has been provided.  In addition, full 

theoretical justification for the algorithms has been presentee 

showing both that the algorithms are correct and that they are 

actually realizable (in the sense that every algorithm will leieed 

terminate). 

Ii bf.ould be recognized that the important determination of the 

its iNbJXvj) has bwen everywhere ignored.  This determination is 

direui-ly dependent .m the relations R and R', which relations are 

42 



very system-dependent.  Since the nature of R  and R1 and thus the 

determination of the sets INDEX(j) will always be idiosyncratic to a 

particular situation, it was decided that a general treatment of that 

problem would not be presented in this paper. 

The analysis of storage requirements in Section VI provides not 

only a measure of the space needed to implement the Scheduler in a 

given data-sharing situation, but also a rough numerical gauge for 

comparing the model of HC1 as realized in this paper with other 

data-sharing models which may be under consideration.  In a direct 

way, therefore, this paper is a first tangible (and necessary) step 

towards the tradeoff analyses of data-sharing techniques which are 

part of the specified End Products of Project 6710 (3.3.2). 

43 



BIBLIOGRAPHY 

1. Harary, Frank, Norman, Robert Z., and Cartwright, Dorwin. 
Structured Models: An Introduction to the Theory of Directed . 
Graphs. New York: John Wiley and Sons, Inc., 1965- 

2. LaPadula, Leonard J.  "Harmonious Cooperation of Processes 
Operating on a Common Set of Data, Part 1." ESD-TR-72-147, Vol. 1. 

hh 



Security Classification 

DOCUMENT CONTROL DATA R&D 
(Security classification of title,   body of abstract and indexing annotation must be entered when  the overall report ia classified) 

t. ORIGINATING  ACTIVITY (Corporate author) 

The MITRE Corporation 
P.  O.  Box 208 
Bedford, Massachusetts    01730 

2*. REPORT   SECURITY   CLASSIFICATION 

UNCLASSIFIED 
2b.    GROUP 

3.   REPORT   TITLE 

HARMONIOUS COOPERATION OF PROCESSES OPERATING ON A COMMON SET 
OF DATA,   PART 2 

4.  DESCRIPTIVE NOTES (Type of report and inclusive dales) 

5.  AUTHOR(S) (First name, middle initial, last name) 

D.   Elliott Bell 

6     REPORT   DATE 

DECEMBER 1972 
Sa.    CONTRACT   OR   GIANT   NO. 

F1962 8-71-C-0002 
6.   PROJBC T NO. 

671A 

7a.    TOTAL   NO-   OF   PAGES 

50 
7b.   NO.   OF   REFS 

9a.   ORIGINATOR'S   REPORT  NUMBERI3) 

ESD-TR-72-147, Vol.  2 

9b.  OTHER REPORT NO(S> (Any other numbers that may be assigned 
this report) 

MTR-2254,   Vol.   II 
ID     DISTRIBUTION   STATEMENT 

Approved for public release; distribution unlimited. 

II.   SUPPLEMENTARY   NOTES 12.   SPONSORING   MILITARY   ACTIVITY 

Deputy for Command & Management Systems 
Electronic Systems Division, AFSC 
L.  G.  Hanscom Field,  Bedford, Mass.  017r 

13     ABSTRAC T 

This report provides algorithms (and proofs of their correctness) which actualize the 
data-sharing model of "Harmonious Cooperation of Processes Operating on a Common 
Set of Data, Part 1" (MTR-2254).   Also included are a sketch of the coordination of the 
algorithms in Part 2 in the operation of the Scheduler of Part 1 and a brief analysis of 
the storage required to implement this version of the Scheduler. 

DD,FN°OR:.S1473 
Security Classification 



Security Classification 

KEY   WORDS 
ROLE WT 

DATA SHARING 

DEADLOCK 

FINITE-STATE MACHINES 

PERMANENT BLOCKING 

Security Classification 


